

MediaTek Proprietary and Confidential. © 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in part, is strictly prohibited.

Version: 0.1 (Alpha Release)

Release date: 2020-05-30

NeuroPilot-Micro for MT3620 User Guide

M

e
d
i
a
T
e
k
C
o
n
f
i
d
e
n
t
i
a

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 2 of 19

Document Revision History

Revision Date Author Description

0.1 2020-05-30 Sarine Weng Initial draft

Me
dia
Tek

Con
f ide
nt ia
l A

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 3 of 19

Table of Contents

Document Revision History.. 2

Table of Contents ... 3

1 Introduction... 4

1.1 MT3620 Overview... 4

1.2 NeuroPilot-Micro Overview .. 5

2 NeuroPilot-Micro ... 7

2.1 TFLite Model .. 7

2.2 Training ... 9

2.3 Inference ..10

2.4 NeuroPilot-Micro Optimization..11

2.5 Release SDK..11

3 Integration ...13

3.1 Person Detec tion Example ..13

3.2 Camera Input and TFT Display Output ..14

3.3 Inter-Core Communication ...15

3.4 Build and Deploy ...15

3.5 MNIST Example ...16

3.6 2-Core Example ...17

Terms and Conditions ...19

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 4 of 19

1 Introduction

This document is to describe NeuroPilot-Micro functionality and programming methodology based on MT3620

M4 processor. The first chapter gives a brief introduction about MT3620 and NeuroPilot-Micro. The second

chapter describes NeuroPilot-Micro architecture, including training and inference phase. Finally, the last

chapter demonstrates how to integrate NeuroPilot-Micro with MT3620 by a Person Detection example.

1.1 MT3620 Overview

MT3620 is a highly integrated single chip tri -core MCU designed to meet the requirements of modern, robust

internet-connected devices. It leverages the Microsoft Azure Sphere security architecture to provide an

unprecedented level of security to connected device manufacturers. For more information, please refer

Microsoft “Azure Sphere Platform Overview” document.

Following is the MT3620 block diagram. ARM Cortex-A7 is for Azure Sphere operating system and high-level

user applications. In NeuroPilot-Micro, we use it to communicate with peripherals such as camera and display.

There are two ARM Cortex-M4 cores, each with dedicated 192KB TCM, 64KB SRAM, and integrated FPU.

Besides, there are 1M Flash shared by CA7 and two CM4 cores. For inter-core communication, MT3620

provides 1KB shared memory between CA7 and CM4.

For setup and developing MT3620 applications, please refer to https://docs.microsoft.com/en-ca/azure-

sphere/install/overview.

https://docs.microsoft.com/en-ca/azure-sphere/install/overview
https://docs.microsoft.com/en-ca/azure-sphere/install/overview

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 5 of 19

1.2 NeuroPilot-Micro Overview

NeuroPilot-Micro is based on TFLite-Micro, with MTK optimize framework to speedup inference time. Below is

the development flow of NeuroPilot-Micro, it can be split into training and inference part. The upper part is for

training, we can use TensorFlow and NeuroPilot MLKit to train, quantize, and pruning. The result is a FlatBuffers

format model with .tfl ite as suffix. Instead of using TensorFlow provided tools, other NN tools and converts can

be used too. As long as it can be transfer into FlatBuffers format.

The lower part is for inference. The .tfl ite is converted to C array before the inference works. NeuroPilot-Micro

SDK framework is the most important part, it is responsive for run-time and resource arrangement. Finally, the

target tool-chain combines all these together to a result binary fi le.

Following is the road map of NeuroPilot-Micro. The left part is the current status, and is the future concept. In

current status, NeuroPilot-Micro is based on TFLite-Micro and CMSIS-NN with our optimizer to speed up

inference time. In the future, we design to implement an offline optimizer to optimize trained model before

inference. Then we will also improve our interpreter and micro-runtime. Besides, NeuroPilot is a mature

framework for training and inference on Android. We plan to develop a converter which can convert NeuroPilot

result for NeuroPilot-Micro to use.

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 6 of 19

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 7 of 19

2 NeuroPilot-Micro

As describe before, NeuroPilot-Micro is based on TFLite-Micro, with MTK optimize framework to speed up

inference time. So in this chapter, we will first show the TFLite model structure. Then we will describe how to

do the training and inference work. Finally, we will mention the optimize mechanism and the SDK structure.

2.1 TFLite Model

TFLite model is FlatBuffers format, it uses schema.fbs to describe the model structure. Schema.fbs is a nested

structure with root table Model. Following is the partial content of schema.fbs and its visualization.

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 8 of 19

TFLite model is a binary fi le in FlatBuffers format, so there are tools for visualizing it.

 https://lutzroeder.github.io/netron/ – this is an online tool to display model content. It shows the

model as graph and lists properties, attributes, input, and output of each node.

 flatc tool – this tool is provided by FlatBuffers, and it can be used to parse and convert model in

different format. The most case we use is this command “flatc -t --strict-json --defaults-json

schema.fbs -- my_model.tfl ite”. This command transfer tfl ite model into json format, so it can be

viewed by json viewer. Moreover, we can use “--cpp” option to generate C++ header for all definitions

in the schema.fbs. Schema_generated.h is the header fi le name, and the generated functions can be

used to get the required model data.

 xxd – this tool is for convert binary into C array. In MT3620 CM4 environment, there is no fi le system

can store model fi le. So we transfer binary model into C array, and build into execution fi le.

Following is a visualized example of person detection model using https://lutzroeder.github.io/netron/. It

shows the model as a graph. After clicking on the node, the properti es will be displayed on the right-hand side.

https://lutzroeder.github.io/netron/
https://lutzroeder.github.io/netron/

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 9 of 19

2.2 Training

There are many online resources to train a TFLite model, such as TensorFlow or Keras. Here we use Keras

MNIST training as an example. Training script is located at NeuroPilot-Micro SDK/tools/mnist_keras/

keras_cnn.py. In the training script, we first define the model structure and call model.compile() to construct

the model. Then we call model.fit() or model.fit_generator() to do the training work.

To convert model into TFLite FlatBuffers format, TensorFlow provides following three functions to do the work.

 TFLiteConverter.from_saved_model() – converts SavedModel directories

 TFLiteConverter.from_keras_model() – converts tf.keras models.

 TFLiteConverter.from_concrete_functions() – converts concrete functions.

After getting model, we can reduce model size by post quantization. There are three types of post quantization.

Dynamic range quantization is the simplest form, it statically quantizes only the weights from floating point to

8-bits of precision. Another is full integer quantization of weights and activations, it can get further

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 10 of 19

improvements but need representative dataset. The other is float16 quantization, it quantizes weights to 16

bits float. Below is an example of full integer quantization.

2.3 Inference

Model inference can be separated into following five parts. For more information, please refer to person

detection example in NeuroPilot-Micro SDK/app/mt3620/person_detection_demo.

 load model – apply xxd to convert tfl ite model into C array, then call ::tflite::GetModel() to load model

into inference.

 OP resolver – TFLite-Micro provide two OP resolvers, one is AllOpsResolver and another is

MicroMutableOpResolver. AllOpsResolver adds all TFLite-Micro OPs in advance, so we do not need to

add each OP individually. But it requires larger memory. On the other hand, MicroMutableOpResolver

adds each OPs by hands. So we can only add the minimal required OPs to save memory space.

Following is the example of using MicroMutableOpResolver, it use AddBuiltin() function to add OPs.

 initialize interpreter – interpreter is the central part of TFLite-Micro. It is feed with a static working

buffer called tensor_arena and responsive for allocate tensor and invoke.

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 11 of 19

 allocate tensor – tensor is the input and output of each model node. After interpreter allocated, we

call AllocateTensors() function to allocate tensors from tensor_arena.

 invoke – finally, we call Invoke() function to the inference work when receiving each input data. The

result can be get by output() function and be parsed according to the algorithm.

2.4 NeuroPilot-Micro Optimization

When using TFLite-Micro, the most significant problem we encounter is the TCM space. MT3620 CM4 has

192KB TCM, however, a tfl ite model is about 200~300KB in average. It is too large to fi l l in TCM. Although we

can put the model in flash memory, the execution time become 3x longer than put it in TCM.

NeuroPilot-Micro provide a mechanism call dynamic loading. It can speed up by 2x~3x with only l ittle TCM

storage. To use dynamic loading, we need to prepare a storage in TCM for loading weights and bias into the

buffer. The default buffer size is 5KB because it can be reused to load the model separately. This size is enough

for most cases according to our experiments. In our experiments, person detection invoke time decrease from

3300ms to 1130ms. Cifar10 invoke time decrease from 3000ms to 870ms.

Dynamic loading is default turned on in our release. There are two functions in interpreter,

EnableDynamicLoad() and DisableDynamicLoad(). We can use these two functions to enable or disable

dynamic loading. The header fi le is located at NeuroPilot-Micro

SDK/headers/tensorflow/lite/micro/micro_interpreter.h.

2.5 Release SDK

The released SDK structure is showed in following figure. App folder contains two folders, l ib_src and

vs_project. Lib_src puts inference examples. New inference example can be put here, but remember to change

fi le in CMakeLists.txt before build it. There are three projects in vs_projects folder. The first one is the MNIST

project, which detects the hand writing number through the touch panel. The second is the vison project, it

contains the person detection, and CIFAR10 recognition. But it only executes one type of recognition in the

same time. Using compile definition to choose PERSON_DETECTION_DEMO or CIFAR10_DEMO in

CMakeLists.txt. Besides, we can choose to use USER_MODE or ENG_MODE. The difference between

user_mode and eng_mode is the display image size. User_mode shows the origin 160x120 image, and

eng_mode displays the image size according to the recognition size. It directly shows the recognition input. The

last example is the 2-core project, which util izes 2 Cortex-M4 and one for person detection another for

CIFAT10. So it can recognize person and CIFAR10 objects simultaneously. For more information, please refer to

next chapter about MT3620 integration.

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 12 of 19

Doc folder puts the release documents. Headers folder includes TFLite-Micro header fi les and CMSIS-NN

header fi les. Prebuilts folder contains the prebuilt l ibs, l ibcmsis.a and libtensorflow-microlite.a, which are

needed for integrating into MT3620 Visual Studio project. Tools folder contains cmake fi les and other related

materials. Third_party folder puts TFLite-Micro third party l ibraries header fi les.

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 13 of 19

3 Integration

In this chapter, we will first demonstrate how to integrate person detection example into MT3620 CM4

application. Then we will discuss the whole example, including how to connect camera as input, TFT display as

output, and inter-core communication. Finally, we will l ist the steps to build and deploy the whole application.

The following are the hardware used in the demo:

 Azure Sphere MT3620 development board

o Seeed Azure Sphere Development Kit, https://www.seeedstudio.com/Azure-Sphere-

MT3620-Development-Kit-US-Version-p-3052.html

 Camera

o Arducam 2MP OV2640 Mini Module SPI Camera,

https://www.arducam.com/product/arducam-2mp-spi-camera-b0067-arduino/

 TFT Display

2.8 inch TFT Capacitive Touch Screen, https://www.buydisplay.com/2-8-inch-tft-touch-shield-for-arduino-w-

capacitive-touch-screen-module, with the following configuration: “Pin Header Connection-4-Wire SPI”,

“VDD=3.3V” and “2.8 inch Capacitive Touch Panel”

3.1 Person Detection Example

The overview of person detection example is shown in following figure. It uses camera as input and TFT panel

as output. After receiving camera input from SPI driver, we resize it from 160x120 RGB image to 96x96 gray

image for person detection input. Then we send the 96x96 gray image to Cortex-M4 for person detection

inference. Finally, the result notifies back to Cortex-A7 and display on panel.

https://www.seeedstudio.com/Azure-Sphere-MT3620-Development-Kit-US-Version-p-3052.html
https://www.seeedstudio.com/Azure-Sphere-MT3620-Development-Kit-US-Version-p-3052.html
https://www.arducam.com/product/arducam-2mp-spi-camera-b0067-arduino/
https://www.buydisplay.com/2-8-inch-tft-touch-shield-for-arduino-w-capacitive-touch-screen-module
https://www.buydisplay.com/2-8-inch-tft-touch-shield-for-arduino-w-capacitive-touch-screen-module

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 14 of 19

Person detection example is located at NeuroPilot-Micro SDK/app/mt3620/person_detection_demo directory.

There are two functions in main.cc, one is person_detection_setup() and another is person_detection_loop().

The function person_detection_setup() do the initial works, including get model, load OPs, declare interpreter,

and allocate tensor. The other function person_detection_loop() do the inference work, it calls invoke function

and decide final result based on the output score. To make sure these two function be used in pure C

environment, we need to add the extern “C” key words before them.

To build the static l ibrary, type following commands in the NeuroPilot-Micro SDK root folder. (Optional, there is

already one copy of the static l ibrary in the RTApp folder.)

 mkdir build

 cd build

 cmake ..

 make

After build finish, the result static l ib will be shown at the build folder. Copy libperson_detection_demo_static.a

in the build folder and libtensorflow-microlite.a, libcmsis.a in the prebuilts/lib folder to Visual Studio RT-core

project folder. Then modify CMakeLists.txt to add these three libraries.

To use person_detection_setup() and person_detection_loop() functions, add the extern key word before

declaration in main.c. In addition, since person detection model is too large to fi l l TCM, we need to put it to

Flash. The methodology is to change RODATA_REGION to Flash in l inker.ld. Followings are the screen shot of

the settings.

3.2 Camera Input and TFT Display Output

“Arducam 2MP OV2640 Mini Module SPI camera” and “2.8 inch TFT Capacitive Touch Screen” are used for this

demo. Following is the hardware connection to setup camera input and TFT display output.

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 15 of 19

The camera and TFT display setting is describe in sample_hardware.h and sample_hardware.json. Camera

driver is in arducam_driver folder, main.c call driver function to init camera and get input to s_CameraBuffer.

The camera can be configured to use JPEG or BMP format, the default is BMP format. TFT display driver is in

i l i9341_driver folder. It provides functions to set text size, cursor position, display string, and draw bitmap. One

thing to note is that although camera and display color format are all RGB565, the endian order is different. So

we need to change the endian order before display the output image.

3.3 Inter-Core Communication

The HL-core is in charge of receiving camera data and handling the screen display, while the RT-core is in charge

of the person detection logic. Inter-core communication between HL-core and RT-core is realized by MT3620

hardware mailbox and shared memory. Azure Sphere OS provides 1KB buffer for HL-core and RT-core inter-core

communication. Once HL-core receives a complete image from Arducam, HL-core uses the hardware mailbox to

notify RT-core and transmit the image data to RT-core with shared memory, and then show the image on the

TFT display. The person detection takes about 1.1s to do the inference work. Once the inference is completed

on RT-core, the result is sent back to HL-core by using mailbox and shared memory. Note that, the inter-core

buffer size is 1KB, if data exceed 1KB then it needs to be send and receive multiple times.

3.4 Build and Deploy

Following are the steps to build and deploy RT-core and HL-core apps. The steps are quite similar, but RT-core

app needs to be loaded before HL-core app. Moreover, before build the RT-core app, the

AzureSphereRTCoreToolchainVFP.cmake fi le needs to be copied to Azure SDK installation directory.

3.4.1 RT-Core App

 Start Visual Studio

 Open RT-core project by selecting File -> Open -> CMake, then navigate to the RT-core folder and

select CMakeLists.txt to open

 Change project configuration to “ARM-Release”

 Change the debug target to “GDB Debuffer (RTCore)”

 From Build menu, click Build ALL. (or click the button in the right hand side of the following figure)

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 16 of 19

 Press F5 to start the RT-core app with debugging

 The log will be output through H3-6 and user could use terminal software for reading and logging

3.4.2 HL-Core App

 Start another Visual Studio instance

 Open HL-core project by selecting File -> Open -> CMake, then navigate to the HL-core folder and

select CMakeLists.txt to open

 Change the debug target to “GDB Debuffer (HLCore)”

 From Build menu, click Build ALL. (or click the button in the right hand side of the following figure)

 Press F5 to start the HL-core app with debugging

 The camera image and the result will be shown on the TFT display, the log will be shown in the Visual

Studio output window

3.5 MNIST Example

The MNIST example is to recognize hand writing numbers. It receives input from touch panel, pre-process and

down-sample from 160x160 array to 28x28 array. Then it sends to Cortex-M4 for MNIST model recognition.

After it gets the result, Cortex-M4 notifies Cortex-A7 to display the result.

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 17 of 19

The hardware connection is same as person detection except following additional connects. The TFT touch

panel driver is in ft6x06_driver folder. It provides ft6x06_init(), ft6x06_detect_touch(), and ft6x06_get_xy()

three functions to detect touch and get touch points . In this example, we create a timer for checking touch per

20ms, and use SM_IDLE, SM_DRAWING, and SM_DONE three states to identify input. When there is no input

over 400ms, we regard as touch done. And clean screen after touch done 1s.

3.6 2-Core Example

Finally is the 2-core example. MT3620 has 2 Cortex-M4, so we use one core for person detection and another

core for CIFAR10 recognition. Following is the application flow. When Cortex-A7 receives camera input, it

resizes 160x120 RGB image to 96x96 gray image and 32x32 RGB image. Then it send these two images to each

CM4 core respectively. After each CM4 finish their inference work, they notify back and CA7 updates to panel

for display.

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 18 of 19

Cortex-M4 is using UART to display output. For 2-core cases, we need two TTL to USB cables. Connect RXT to

H3-6 for core-0 and H3-8 for core-1.

For RT-core, you could use the following commands to sideload the image package:

 azsphere device sideload deploy --imagepackage azure-sphere-combo-2core\rtcore\out\ARM-

Release\azure-sphere-combo-cifar10-rtcore.imagepackage

 azsphere device sideload deploy --imagepackage azure-sphere-combo-2core\rtcore_2\out\ARM-

Release\azure-sphere-combo-cifar10-rtcore-2.imagepackage

For HL-core application, you could choose to use command or Visual Studio to deploy. The HL-core log will be

displayed on the Visual Studio output window.

Confidential B

MediaTek Proprietary and
Confidential.

© 2020 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this document, in whole or in
part, is strictly prohibited

Page 19 of 19

Terms and Conditions

Your access to and use of this document and the information contained herein (collectively this “Document”) is subject to your

(including the corporation or other legal entity you represent, collectively “You”) acceptance of the terms and conditions set forth

below (“T&C”). By using, accessing or downloading this Document, You are accepting the T&C and agree to be bound by the T&C. If

You don’t agree to the T&C, You may not use this Document and shall immediately destroy any copy thereof.

This Document contains information that is confidential and proprietary to MediaTek Inc. and/or its affiliates (collectively

“MediaTek”) or its licensors and is provided solely for Your internal use with MediaTek’s chipset(s) described in this Document and

shall not be used for any other purposes (including but not limited to identifying or providing evidence to support any poten tial

patent infringement claim against MediaTek or any of MediaTek’s suppliers and/or direct or indirect customers). Unauthorized use

or disclosure of the information contained herein is prohibited. You agree to indemnify MediaTek for any loss or damages suffered

by MediaTek for Your unauthorized use or disclosure of this Document, in whole or in part.

MediaTek and its licensors retain titles and all ownership rights in and to this Document and no license (express or implied, by

estoppels or otherwise) to any intellectual propriety rights is granted hereunder. This Document is subject to change without further

notification. MEDIATEK DOES NOT ASSUME ANY RESPONSIBILITY ARISING OUT OF OR IN CONNECTION WITH ANY USE OF, OR

RELIANCE ON, THIS DOCUMENT, AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY, INCLUDING, WITHOUT LIMITATION,

CONSEQUENTIAL OR INCIDENTAL DAMAGES.

THIS DOCUMENT AND ANY OTHER MATERIALS OR TECHNICAL SUPPORT PROVIDED BY MEDIATEK IN CONNECTION WITH THIS

DOCUMENT, IF ANY, ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR

OTHERWISE. MEDIATEK SPECIFICALLY DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A

PARTICULAR PURPOSE, COMPLETENESS OR ACCURACY AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE

OF DEALING OR COURSE OF PERFORMANCE. MEDIATEK SHALL NOT BE RESPONSIBLE FOR ANY MEDIATEK DELIVERABLES MADE TO

MEET YOUR SPECIFICATIONS OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.

Without limiting the generality of the foregoing, MEDIATEK MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING

THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES MEDIATEK ASSUME ANY LIABILITY ARISING OUT OF

THE APPLICATION OR USE OF ANY PRODUCT, CIRCUIT OR SOFTWARE. You agree that You are solely responsible for the designing,

validating and testing Your product incorporating MediaTek’s product and ensure such product meets applicable standards and any

safety, security or other requirements.

The above T&C and all acts in connection with the T&C or this Document shall be governed, construed and interpreted in accordance

with the laws of Taiwan, without giving effect to the principles of conflicts of law.

